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Distribution of linear statistics in random matrix models 
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Received 29 November 1993 

Abstrad In this paper the distribution o f  line% statistics in random marix models is evaluated 
in the large-N approximation. The distribution function is found to be a Gaussian but with a 
mean and mode, which depend on the single-particle potential, that do not coincide, albeit with 
a vanishingly small discrepancy in the Limit of a perfect conductor. 

Since the discovery of universal conductance fluctuations in mesoscopic conductors it 
has become clear that the conductance and other linear statistics are non-self-averaging 
quantities, e.g. the mean and the mode of the distribution function are different. Therefore, 
physical quantities, such as the conductance and magneto-conductance, should be described 
in terms of their distribution functions rather then their moments and so in this letter we 
shall concentrate upon these distribution functions and derive them, using random matrix 
theory, for the metallic regime. 

Random matrix theory, originally conceived to provide a theoretical description of the 
energy levels of heavy nuclei [l, 21, but recently applied to other diverse areas of physics 
such as quantum chaos [3 ]  and string theory [4], provides a framework for such a description, 
based upon the models of random transfer matrices of Imry [5,  61. In these models a 
disordered conductor of length L and cross-sectional area Ld-' with N = (kFL)d-'-kF the 
Fermi momentum-propagating channels is parametrized by a 2N x 2N transfer matrix T. 
Physical quantities are then given by functions of the eigenvalues x, (z 0). n = 1, . . . , N ,  
of the matrix X = $(TtT + (T'T)-' - 2), which, as with all random matrices, may be 
orthogonal, unitary or symplectic. We shall be interested in 'linear statistics', where a 
typical physical quantity f is given by f = C, f ( x . ) ,  e.g. the two-probe conductance g, 
related to the eigenvalues by g = Cn(l + x , ) - ] .  

According to the maximum entropy unsutz [6] the joint probability distribution of x ,  is 

~ [ x l ,  . . . , x N ]  c( (1) 
where 

E[VI = -B C Inlx, - x , l +  ~ ( x , )  ( 2 )  
I<mmot<N l<n<N 

B = 2,  1,4 describes respectively the unitary, orthogonal and symplectic ensemble and 
V ( x )  is the confining potential. 

A critical quantitative test of the validity of the random transfer matrix approach in 
the weak-disorder regime was recently canied out 171 by comparing an exact analytic 
calculation, within the random matrix theory, of the two-level cluster function for a given 
finite-size system, with an independent numerical evaluation of the cluster function using 
the tight-binding Anderson model. The excellent overall agreement demonstrates the 
general validity of the random matrix model. This confirms the hypothesis [5] that the 
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only correlation in the joint probability distribution is a logarithmic interaction between 
eigenvalues which is universal and is completely determined from symmetry considerations 
alone. The 'singleparticle' potential V ( x ) ,  which may be thought of as a Lagrange 
multiplier function from some additional constraint, e.g. the given mean value of the 
conductance, depends on the system parameters. Although this single-particle potential is 
not known from any microscopic Hamiltonian, attempts have been made 16. 81 to consider 
simple potentials suggested in the metallic regime. For example it is now well understood 
that a linear confining potential ( V ( x )  = t x )  with a sufficiently large slope ( t  is the Drude 
conductance) describes the metallic regime very well. The correlation of the eigenvalues due 
to this strongly confining potential results in a universal variance of the conductance [€I, lo]. 
This was first discovered from a diagrammatic perturbation calculation in the metallic region 
and infinitevolume limit [9] and the above results are in good qualitative agreement with 
it. In the large-N limit, we may treat as a fluid the collection of eigenvalues [2]. In 
this approximation, the universal variance was found and an analogue of the Dyson-Mehta 
theorem [2] for linear statistics was derived recently [ 1 I]. 

In view of the accuracy of the fluid approximation in the metallic region (the eigenvalue 
density scales with N )  12, 12, 13, 14, 151, we shall apply it to the problem of determining 
the distribution function for linear statistics. 
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Consider the distribution function of a hear statistics defined as 

where (. . .) denotes average with respect to e-E["]. To determine P(f), we may apply a 
parametric representation of the &function S ( x )  = (27r)-I 1-% dk expI-ikx] and write 

where the moment generating function is 

and where V,,(x) = ikf(x) is the 'external potential' and l d p ( x )  := 1,". . . j"," n;='=, &,. 
Thus, -In &k) is the change of the free energy due to the perturbation of the 'external 
potential'. 

.@[U] = -$Jdm&Jdmdyu(x)lnIx -ylu(y)+ Im dx [ V ( x ) + C ] c r ( x )  (6) 

with 1," dx u(x )  = N and C the chemical potential for the particle number constraint. The 
equilibrium density, u ( x ) ,  therefore satisfies an integral equation of Dyson [16], 

(7) 

In the large-N limit, the free energy, E[U], reads 

fi g m d t  u(t)ln Ix - tl = V ( x )  + C. 
The solution of an equivalent equation 

found by applying d/dr on (7) reads [171 
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where G(x, y) := &a,ln [I& - J J l / ( &  + ,,9]; note that this was derived in [ l  I]. With 
these it is easily seen that P ( k )  = (1/N)e-6E, where N is the normalization constant to be 
determined by setting l d p ( f )  P ( f )  = 1 and 6 E  := i?[V + Vex] - i?[Vl. Thus, because U 

is linearly related to U, u(x; [V + V,]) = uo + U,, where uo and 61 depend, respectively, 
only on V and Vex and therefore 

where we have used (9) and (10) to simplify the expression and assumed, without loss of 
generality, that f and V are functions of &, as will become clear later. 

With the redefinition f i  = tl and f i  = t ~ .  followed by integration by parts in fl, t2, 
we find by a Mellin transform that 6E = -Akz /2  + iBk, where 

and &) := spdx x"-'F(x),  i.e. is the Mellin transform of F. Equation (12) has been 
recently found in [I 11 and also through a calculation using orthogonal polynomial techniques 
in the large-N, followed by the large-t, limit, based on the Bessel kernel [lo, 191. Thus. 
upon performing the inverse Fourier hansform on we obtain 

which is a universal distribution function with its mean value dependent on the type of 
linear statistics and the 'intemal potential' V. This distribution is valid only in the metallic 
region where there is good conduction. Note that, using random matrix theory, it has 
been previously argued by Politzer 1201 that a Gaussian distribution should follow, but his 
'formal' method of derivation was unable to give an explicit result for the variance, unlike 
the present letter. 

Given the distribution function for the linear statistic f it is straightforward to determine 
its mean and variance. I f f  is distributed along the whole of the real axis, then from (14) 
the mean o f f  is 7 = B and the variance squared is = A ,  where Af = f - 7. The 
variation is therefore universal, depending only upon the linear statistic and not upon the 
particular system, i.e. the internal potential. However, linear statistics typically only take 
positive values, in which case the mean of the distribution will no longer equal the mode, 
i.e. f # B and the variance will depend upon the internal potential. However, as we will 
now show, the discrepency between the mean and the mode may well be extremely small 
and, in any case, this will certainly be so when in the metallic regime. 

As an example of the above, let us consider the conductance (g), where f ( x )  = 
1/(1 + x ) .  It follows that A = l/S& but to determine E we require a particular internal 
potential. If we take V(x) = x u ,  0 c Q c $. then B = Q/(B COS(ZQ)), which is positive. It 
follows that the mean of g and gz can be easily expressed in terms of incomplete gamma 

- 
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functions, but simple expressions follow for the variance squared of g in two limits of a .  As 
a + 0, B + 0 too, so the distribution tends to a Gaussian centred at the origin and therefore 
(Ag)* + ( I  - 2/ir)A. It should be noted that, while in this limit the difference between 
the mean and the mode take its maximum value, the mean and variance of the conductance 
become comparable in magnitude and we are therefore no longer in the metallic regime. 
We therefore expect P ( g )  to take on a different structure as we are then approaching the 
insulating regime. Near the insulating regime, V ( x )  - [ln(x)]*. x >> 1 and the potential 
we have chosen fails to describe this situation; see [7] and [15]. In the opposite limit of 
a 4 f ,  B diverges and the expectation values with respect to this distribution should then 
become insensitive to the fact that only positive values of g are taken since the Gaussian 
will only have appreciable weight within the variance, about the mode. Therefore, in this 
limit, which is the metallic regime, + A = l/Sg. which is the same result as found 
by other means. Also, the mode of the distribution diverges, i.e. the system tends towards 
being a perfect conductor and the difference between the mean and mode vanish in the limit. 
However, it was observed in [ll] that there is deviation from the logarithmic repulsions 
between the eigenvalues. 
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Figure 1. A plot of lhe sqm of the variance of the conductance. (As)', for fl = 1.2  and 
4. don- its limiting values. for the singleparticle potential V ( x )  = x''. The solid line 
is y = (Ag)? as a function of a ,  the dotted line is y = (1 - 2/n)/8@ and the dashed line is 
y = l/SS. 

The variance squared, along with its limiting values, is displayed in figure 1 for all three 
values of g. In figure 2 P ( g )  itself is displayed, for a = 0.3,0.4.0.45 and 0.47, all with 
6 = 2. Note that for a = 0.3 we are no longer in the metallic regime, but we include the 
curve for reference as it is very clear that here the mean and variance are comparable, as 
noted above. 

In the same way we can determine the distribution of the number of eigenvalues in the 
interval (0,s). n(s),  in the large-N limit for the internal potential used above. Since, 
n(s)  = [idx u ( x ) ,  as a linear statistics we have f ( x )  = O(s - x ) ,  and so n(s)  is 
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2.0 , 

0 
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F i y r e  2. A plot of the distribution function of the conductance for the intemal potential 
V ( x )  = x u .  The solid line is a = 0.3. the dotted line is a = 0.4, the dashed line is a = 0.45 
and the dotdashed line is ~2 = 0.47, all with @ = 2. 

distributed according to the normal distribution of (14), with A = (l/7.rr2fi)ln(s/E)) and 
B = (I/lrfi)tan ( ~ 4 4 )  sal4, where E is a regulator that cuts off the short-distance divergence 
introduced in the fluid approximation. 

In conclusion, in the large-N limit of random matrix theory, using the Coulomb fluid 
approximation, we have derived the distribution function of an arbitrary linear statistic, 
finding it to be Gaussian, as previously predicted [ZO]. but now being able to obtain 
expressions for the variance and mean. Taking care to note the conditions on the potential 
introduced in obtaining (IO), we have explicitly evaluated the distribution of the conductance 
for the potential V ( x )  = x",  0 < a < i. Using this potential, we have also evaluated the 
distribution for the n(s), the number of eigenvalues in the range (0, s). 
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